
Document Type: Informational
Title: FAQ-Adhoc-Functions used in composed fields
Question: What functions are used in composed fields
Product:
Product Family:
Sage Fundraising
Product:

Sage Fundraising
Module:

Adhoc
Version/SP:

All versions
KB#:

150731
Solution:
This document contains a brief overview of useful VFP and Sage Fundraising 100 functions for use in Adhoc composed fields. Refer to Sage Fundraising 100 Help for information on using composed fields.

Data Type Conversions
From Character:

To Numeric:

VAL({A})

Examples

VAL(“123”) = 123

VAL(“12Z34”) = 12 -- starts evaluating from the left, stops at first non-digit

VAL(“ABC”) = 0
To Date:

CTOD(“{A}”)

Examples

CTOD(“{^2004/12/31}”) = {2004/12/31}

You could use this with campaign year, {A} = Campaign Year

CTOD(“{^” + {A} + “/12/31}”)

From Numeric

To Character:

STR({A}, Length, Decimal)

Examples:

STR(1234.56, 8, 2) = “ 1234.56”

STR(1234.56, 8, 0) = “ 1234”

STR(1234.56, 3) = “***” (numeric overflow)

The Length is the total length of the resulting string including the decimal point and the numbers to the right of it.

To Date:

DATE({A}, {B}, {C}) where {A} is the year, {B} is the month and {C} is the day

Examples:

DATE(2004, 12, 31) = {2004/12/31)

From Date
To Numeric:

YEAR({A})
YEAR({^2004/12/31}) = 2004

MONTH({A})
MONTH({^2004/12/31}) = 12

DAY({A})
DAY({^2004/12/31}) = 31

Subtract two dates

{A} – {B} = number of days between the two dates

Examples

{^2004/05/11} – {^2004/05/7} = 4

Get the Julian number of a date:

{A} – DATE(YEAR({A}), 1, 1) + 1 = Some Date – Jan 1 of that year + 1

= Julian number of {A}

To Character:

DTOS({A}) (YYYYMMDD format)

DTOS({^2004/5/11}) = “20040511”

DTOC({A}) returns date in whatever the current system date format is

DTOC({^2004/5/11} = “{11/5/2004}” or “{5/11/2004}”

DateForm(n, {A}) where n specifies the format

DateForm(1, {^2004/11/17}) = “November 17, 2004”

DateForm(2, {^2004/11/17}) = “Wednesday November 17, 2004”

DateForm(3, {^2004/11/17}) = “Nov 17, 2004”

DateForm(7, {^2004/11/17}) = “Wed Nov 17, 2004”

DateForm(9, {^2004/11/17}) = “20041117”

From DateTime

To Character:

TTOC({A}, 1) (YYYYMMDD HH:MM:SS format)

Using optional second parameter, this is analogous to DTOS()

TTOC({^2004/11/17 11:21:15 AM}, 1) = “20041117112115”

TTOC({A}) (returns date in whatever the current system date format is)

TTOC({^2004/11/17 11:21:15 AM}, 1) = “11/17/2004 11:21:15”

DateForm(n, {A}) where n specifies the format

DateForm(1, {^2004/11/17 11:21:15 AM}) = “November 17, 2004”

DateForm(2, {^2004/11/17 11:21:15 AM}) = “Wednesday November 17, 2004”

DateForm(3, {^2004/11/17 11:21:15 AM}) = “Nov 17, 2004”

DateForm(4, {^2004/11/17 11:21:15 AM}) = “November 17, 2004 11:21am”

DateForm(5, {^2004/11/17 11:21:15 AM}) = “Nov 17, 2004 11:21am”

DateForm(6, {^2004/11/17 11:21:15 AM}) = “Wednesday November 17, 2004 11:21am”

DateForm(7, {^2004/11/17 11:21:15 AM}) = “Wed Nov 17, 2004”

DateForm(8, {^2004/11/17 11:21:15 AM}) = “Wed Nov 17, 2004 11:21am”

DateForm(9, {^2004/11/17 11:21:15 AM}) = “20041117”

Expanding codes and IDs

Expand Standard Lookup Codes

These are any lookup codes maintained through the lookup table manager.

qLookup.GetDesc(LookupTable, {A}) where {A} is the field containing the code

Examples:

qlookup.getdesc('ROLE', {A}) where {A} is the Constituent Role

qlookup.getdesc('NASTATUS', {A}) where {A} is the Constituent Status

Expand Special Lookup Codes

These are lookup codes which are maintained in their own special tables, such as Campaign Codes and Event Codes.

GetDesc(n, {A}) where n specifies the format

	n
	{A}
	Returns

	1
	Campaign Code
	Campaign Description

	2
	Campaign Code + Year + Appeal Code
	Campaign Appeal Description

	3
	Campaign Code + Year + Appeal Code +Subappeal Code
	Campaign Subappeal Description

	4
	Group Key (Right-justified, 10 character)
	Group Description

	5
	Fund Key
	Fund Code

	6
	Fund Key
	Fund, Program and Subfund Description

	10
	Circle Key
	Circle Description

	11
	Event Code
	Event Description

	12
	Account Key
	Account Type Description

	13
	Account Key
	Account Type Description ; masked account number ; account holder name

	14
	Tax Deductibility Code
	Tax Deductibility Description

	15
	Data Entry Session Key
	Data Entry Session Description

	16
	Membership Type Code + Membership Level Code
	Membership Type/Level Definition Description

	17
	Fund Key
	Agency ID / Fund Code

	18
	Structure Key
	Structure Description

	19
	Node Key
	Node Description

	20
	GL Account Number
	GL Account Description

	21
	Sales Tax Code
	Sales Tax Description

	22
	Yes/No value (‘Y’ or blank)
	Yes or No

	23
	Envelope Key
	Envelope Description

	24
	Envelope Contents Type Code
	Envelope Contents Type Description

	25
	Sponsor Sheet Key
	Sponsor Sheet Series: Sponsor Sheet Number

	26
	Response Code
	Solicitation Description

	27
	Fund Key
	Fund Description (Fund Code)

	28
	Node Key
	Node Code prefaced by all parent node codes

	29
	Tribute Type Code
	Tribute Type Description

	30
	Award Class Key
	Award Class Description

	31
	Fund Key
	Agency ID

	32
	Fund Key
	Fund Description

	33
	Fund Key
	Fund Code / Fund Description

	34
	Agency ID
	Fund Code of Agency’s top level fund

	35
	Asset Pool Key
	Asset Pool Name

	38
	Endowment GL Account Number
	Endowment GL Account Description

	39
	Endowment Key
	Endowment Name

	40
	Endowment Key
	Endowment Code

	44
	Sponsor Sheet Key
	Sponsor Sheet Number

	45
	Sponsor Sheet Key
	Sponsor Sheet Series

	46
	Node Key
	Node Code

	47
	Campaign Package Code
	Campaign Package Description

	48
	Definition Key (report run options, form run options, etc.)
	Definition Description

	49
	Department Code
	Department Name

	50
	Grant Proposal Allocation Funding Source Code
	Grant Proposal Allocation Funding Source Description

Expand Constituent ID into Formatted Name

ID2Name({A}, FormatCode), where {A} is a constituent ID

Example: ID2Name({A}, “001F”)

Omit second parameter to format name in constituent’s preferred format.

	Format Code
	Name Format

	001F
	SpousePrefix SpouseFirst SpouseLast and Prefix First Last

	001M
	Prefix First Last and SpousePrefix SpouseFirst SpouseLast

	002F
	SpousePrefix SpouseFirst S. SpouseLast Prefix First M. Last

	002M
	Prefix First M. Last SpousePrefix SpouseFirst S. SpouseLast

	003F
	SpousePrefix[~SpouseFirst] SpouseLast and Prefix[~First] Last

	003M
	Prefix[~First] Last and SpousePrefix[~SpouseFirst] SpouseLast

	004F
	SpousePrefix and Prefix SpouseFirst S. SpouseLast

	004M
	Prefix and SpousePrefix First M. Last

	005F
	SpouseFirst[~SpousePrefix] and First[~Prefix] SpouseLast

	005M
	First[~Prefix] and SpouseFirst[~SpousePrefix] Last

	00FL
	First[~Prefix] Last

	00SP
	SpousePrefix SpouseFirst SpouseLast

	0AEI
	Prefix First M. Last

	0AEJ
	Prefix and SpousePrefix First Last

	0FIR
	First

	0FLS
	First Middle Last Suffix1 Suffix2

	0FML
	First Middle Last

	0FUL
	Prefix First Middle "Nickname" Last Suffix1 Suffix2

	0ILF
	 (ID) Last, Prefix First Middle

	0JAF
	SpousePrefix and Prefix SpouseFirst SpouseLast

	0JFI
	SpouseFirst and First

	0JFS
	SpousePrefix[~SpouseFirst] and Prefix[~First] SpouseLast

	0LFI
	Last, Prefix First Middle (ID)

	0LFM
	Last, First Middle

	0LPF
	Last, Prefix First Middle

	0NIC
	Nickname

	0NIR
	Nickname[~First]

	0PFL
	Prefix First Last

	0PLI
	Prefix First Middle Last (ID)

	0SIN
	First

	0SJI
	First and SpouseFirst

	0SJS
	Prefix[~First] and SpousePrefix[~SpouseFirst] Last

	0SSL
	Prefix[~First] Last

Alphabetical Listing of Available Functions

ABS() - Returns the absolute value of the specified numeric expression.

Example Return

ABS(-45) 45

ABS(10-30) 20

ABS(30-10) 20

ALLTRIM() - Returns the specified character expression with leading and trailing

blanks removed.

Returns - Character

Remarks - ALLTRIM() removes leading and trailing blanks from the specified character expression and returns the trimmed expression as a character string. This function can be used to ensure that blanks are removed from data entered by a user.

Example Return

“ ABC “ “ABC”

“ A B C “ “A B C”

AT() - Returns the beginning numeric position of the first occurrence of a character expression or memo field within another character expression or memo field, counting from the leftmost character.

Syntax - AT(<expC1>, <expC2>[, <expN>])

Returns - Numeric

Remarks - AT() searches the second character expression for the first occurrence of the first character expression. It then returns an integer indicating the position of the first character in the found character expression. If the character expression isn't found, 0 is returned. The search performed by AT() is case sensitive (upper and lower-case is respected). To perform a search that isn't case sensitive, use ATC().

Example Return

String = 'Now is the time for all good men'

Find_str = ‘is the'

AT(find_str,string) 5

Find_str = 'IS' TO

AT(find_str,string) 0

String = ‘ABABAB’

Find_str = ‘AB’

AT(find_str,string,2) 3

ATC() - Returns the beginning numeric position of the first occurrence of a character expression or memo field within another character expression or memo field, without regard for the case of these two expressions.

Syntax - ATC(<expC1>, <expC2>[, <expN>])

Returns - Numeric

Remarks - ATC() searches the second character expression for the occurrence of the first character expression, without concern for the case (upper or lower) of the characters in either expression. Use AT() to perform a case-sensitive search. ATC() returns an integer corresponding to the position where the first character of the character expression is found. If the character expression isn't found, 0 is returned.

Example Return

String = ‘Now is the time for all good men…’

Find_str – ‘IS THE’

ATC(find_str,string) 5

ATC(‘now’,string) 1

BETWEEN() - Determines if the value of an expression lies between the values of two other expressions of the same date type.

Syntax - BETWEEN(<expr1>, <expr2>, <expr3>)

Returns - Logical

Remarks - BETWEEN() returns a value of true (.T.) if the value of a character, numeric or date expression lies between the values of two other expressions of the same data type. If the value of the expression doesn't lie between the values of two other expressions, BETWEEN() returns false (.F.).

Parameters - <expr1>, <expr2>, <expr3>

True (.T.) is returned if the value of <expr1> is greater than or equal to the value of <expr2> and less than or equal to the value of <expr3>; otherwise, false (.F.) is returned.

CDOW() - Returns the day of the week from a given date expression.

Returns - Character

Remarks - CDOW(), the character day of the week function, returns from a date

expression the name of the day of the week. For example: Sunday or Monday.

Example Return

Bdate = 11/15/05

CDOW(bdate) Monday

CEILING() - Returns the nearest integer that is greater than or equal to the specified numeric expression.

Returns - Numeric

Remarks - CEILING rounds a positive number with a fractional portion up to the next highest integer, and rounds a negative number with a fractional portion up to the integer portion of the number.

Example Return

A = 10.1

B = -10.9

X = 10

Y = -10

CEILING(A) 11

CEILING(B) -10

CEILING(X) 10

CEILING(Y) -10

CHRTRAN() - Replaces each character in a character expression that matches a

character in a second character expression with the corresponding character in a third character expression.

Syntax - CHRTRAN(<expC1>, <expC2>, <expC3>)

Returns - Character

Remarks - CHRTRAN() translates the character expression <expC1> using the

translation expressions <expC2> and <expC3>.

Parameters - <expC1>, <expC2>, <expC3>

If a character from <expC1> is found in <expC2>, the character in <expC1> is replaced by the character from <expC3> that's in the same position in <expC3> as is the character in <expC2>.If <expC3> has fewer characters than <expC2>, the additional characters in <expC2> are translated to null characters. If <expC3> has more characters than expC2>, the additional characters are ignored.

Example Return

CHRTRAN('abcdef', 'ace', 'xyz') xbydzf

CHRTRAN('abcd', 'abc', 'yz') yzd

CMONTH() - Returns the name of the month from a given date expression.

Returns - Character

Remarks - CMONTH(), the character month function, returns the name of the month as a string in proper noun format.

Example Return

A = 12/25/2004

Cmonth(A) December

CTOD() - Converts a character expression to a date expression.

Returns - Date

Remarks - CTOD(), the character to date function, returns a date type value from a character expression.

DATE() - Returns the current system date, which is controlled by the operating

system.

DAY() - Returns the numeric day of the month for a given date expression.

Returns - Numeric

Remarks - DAY() returns a number from 1 through 31.

Example Return

A = 12/25/2004

DAY(A) 25

DMY() - Returns a specified date expression in Day Month Year format.

Returns - Character

Remarks - DMY() returns a character string in a Day Month Year format (for example, 31 May 1965) from a date expression. The month name isn't abbreviated. If SET CENTURY is OFF, DMY() returns a character string in a DD Month YY format (for example, 31 May 65). If SET CENTURY is ON, the format is DD Month YYYY (for example, 31 May 1965).

DOW() - Returns the day of the week from a given date expression.

Returns - Numeric

Remarks - The value returned by DOW() ranges from 1 (Sunday) through 7 (Saturday).

DTOC() - Returns a character type date from a date expression.

Syntax - DTOC(<expD>)

Returns - Character

Remarks - DTOC() returns a character string corresponding to the date expression <expD>. The date format is determined by SET CENTURY and SET DATE.

DTOS() - Returns a character-string date in the format YYYYMMDD from a specified date expression.

Syntax - DTOS(<expD>)

Returns - Character

Parameters - <expD> is the date expression you want to covert to an eight-digit character string.

EMPTY() - Determines whether or not an expression is empty.

Syntax - EMPTY(<expr>)

Returns - Logical

Remarks - EMPTY() returns true (.T.) if the expression <expr> is empty; false (.F.) if the expression isn't empty.

FLOOR() - Returns the nearest integer that is less than or equal to the specified

numeric expression.

Syntax - FLOOR(<expN>)

Returns - Numeric

Remarks - FLOOR() rounds a positive number with a fractional portion down to the integer portion of the number, and rounds a negative number with a fractional portion down to the next lowest integer.

Example Return

A = 10.1

B = -10.9

X = 10

Y = -10

Floor(A) 10

Floor(B) -11

Floor(X) 10

Floor(Y) -10

GOMONTH() - Returns the date that is a specified number of months before or after a given date.

Syntax - GOMONTH(<expD>, <expN>)

Returns - Date

Parameters - <expD> is a date expression.

<expN> is the number of months from the date specified with <expD>. If <expN> is positive, the date returned by GOMONTH() is <expN> months after <expD>. If <expN> is negative, the date returned is <expN> months before <expD>.

Example Return

A = 12/31/2005

GOMONTH(A,2) 02/28/2006

GOMONTH(A,-2) 10/31/2005

IIF() - Returns one of two values depending on the value of a logical expression.

Syntax - IIF(<expL>, <expr1>, <expr2>)

Returns - Character, Date, Logical or Numeric

Remarks - This function, also known as Immediate IF, evaluates a logical expression and then returns one of two expressions. If the logical expression evaluates to a true value (.T.), IIF() returns the first expression. If the logical expression evaluates to a false value (.F.), IIF() returns the second expression.

Parameters - The logical expression that IIF() evaluates is specified with <expL>. If <expL> evaluates to true (.T.), <expr1> is returned. If <expL> evaluates to false (.F.), <expr2> is returned.

INLIST() - Determines whether or not an expression matches one in a series of

expressions of the same data type.

Syntax - INLIST(<expr1>, <expr2>[, <expr3> ...])

Returns - Logical

Remarks - INLIST() searches for an expression in a set of expressions. INLIST () returns true (.T.) if it finds the expression in the set of expressions. If it doesn't find the expression in the set of expressions, INLIST() returns false (.F.).

Parameters - The expression searched for in the set of expressions is specified with <expr1>.Specify the set of expressions to search with <expr2>, <expr3> and so on. You must include at least one expression (<expr2>), and can include up to 24 expressions.All the expressions in the list must be of the same data type (character, numeric, logical or date).

Example Return

Month = CMONTH({12/25/2005}

INLIST(month,'January','February','March') .F.

INLIST(month,’November’,’December’) .T.

INT() - Evaluates a numeric expression and returns the integer portion of the

 expression.

Returns – Numeric

Example Return

A = 12.5

B = -12.5

INT(A) 12

INT(A) -12

INT(6.25 * 2) 12

LEFT() - Returns a specified number of characters from a character expression,

starting with the leftmost character.

Syntax - LEFT(<expC>, <expN>)

Returns - Character

Parameters - Characters are returned from the character expression specified with <expC>. The number of characters returned from the character expression is specified with <expN>. If <expN> is greater than the length of <expC>, all of the character expression is returned. The null string is returned if <expN> is negative or 0. LEFT() is identical to SUBSTR() with a starting position of 1.

Example Return

LEFT(‘Redmond, WA’,7) Redmond

LEN() - Returns the number of characters in a character expression.

Syntax - LEN(<expC>)

Returns – Numeric

LIKE() - Determines whether or not a character expression is contained in another

character expression.

Syntax - LIKE(<expC1>, <expC2>)

Returns - Logical

Remarks - LIKE() returns true (.T.) if <expC1> matches <expC2>. LIKE() returns false (.F.) if <expC1> doesn't match <expC2>.

SET COMPATIBLE determines how LIKE() evaluates <expC1> and <expC2>. If

COMPATIBLE is SET ON, <expC1> and <expC2> have all trailing blanks removed before they are compared. If COMPATIBLE is SET OFF, any trailing blanks in <expC1> and <expC2> are used in the comparison.

Parameters - <expC1> is the character expression that can contain the wildcard characters * and ?. The question mark matches any single character in <expC2> and the asterisk matches any number of characters. You can mix any number of wildcard characters in any combination in <expC1>.

LIKE() compares <expC2> with <expC1>. <expC2> must match <expC1> letter for letter for LIKE() to return true.

LOWER() - Returns a specified character expression in lower-case letters.

Syntax - LOWER(<expC>)

Returns - Character

Remarks - LOWER() converts all upper-case letters (AZ) in the character expression to lower-case (az). All other characters in the character expression remain unchanged.

LTRIM() - Returns the specified character expression with leading blanks removed.

Syntax - LTRIM(<expC>)

Returns - Character

Remarks - LTRIM() returns a character string that results from removing the leading blanks from a character expression. This function is especially useful for removing the leading blanks that are inserted when you use STR() to convert a numeric value to a character string.

MAX() - Returns the expression with the highest ASCII or numeric value or the latest date from a list of character, numeric or date expressions.

Syntax - MAX(<expr1>, <expr2>[, <expr3> ...])

Returns - Character, Date or Numeric

Remarks - MAX() (maximum) evaluates a set of expressions and returns the expression with the largest value. When determining the maximum date value from a set of dates, MAX() returns the latest date.MAX() returns the character expression with the maximum ASCII value from a set of character expressions.

Parameters - <expr1>, <expr2>, and <expr3> are the set of expressions from which you want MAX() to return the expression with the highest value.

All the expressions must be of the same type (character, numeric or date).

Example Return

MAX(54,39,40) 54

MDY() - Returns the specified date expression in Month Day Year format.

Syntax - MDY(<expD>)

Returns - Character

Remarks - MDY() returns a date expression in Month Day Year format with the name of the month spelled out. If SET CENTURY OFF, the resulting character expression has the format Month DD, YY. If SET CENTURY is ON, the format is Month DD, YYYY.

Example Return

MDY({08/16/92) August 16, 1992

MIN() - Returns the expression with the lowest ASCII or numeric value or the

earliest date in a list of character, numeric or date expressions.

Syntax - MIN(<expr1>, <expr2>[, <expr3> ...])

Returns - Character, Date or Numeric

Remarks - MIN() (minimum) evaluates a set of numeric expressions and returns the expression with the smallest value. When determining the minimum date value from a set of dates, MIN() returns the earliest date. MIN() returns the character expression with the minimum ASCII value from a set of character expressions.

Parameters - <expr1>, <expr2>[, <expr3> ...]

<expr1>, <expr2>, and <expr3> are the set of expressions from which you want MIN() to return the expression with the lowest value. All the expressions must be of the same type (character, numeric or date).

Example Return

MIN(54,39,40) 39

MOD() - Divides one numeric expression by another numeric expression and returns the remainder.

Syntax - MOD(<expN1>, <expN2>)

Returns - Numeric

Remarks - MOD() (modulus) divides two numeric expressions and returns the

remainder. MOD() and the % operator return identical results.

Parameters - <expN1> is the dividend. The number of decimal places in <expN1> determines the number of decimals places in the result.

<expN2> is the divisor. A positive number is returned if <expN2> is positive, and a negative number is returned if <expN2> is negative.

Example Return

MOD(36,10) 6

MONTH() - Returns the numeric month for a given date.

Syntax - MONTH(<expD>)

Returns - Numeric

Remarks - MONTH() returns a number from 1 through 12 indicating the month of the year. January is month 1, and December is month 12.

Parameter - <expD> is the date expression for which you want MONTH() to return the month number.

RAT() - Returns the beginning numeric position of the first occurrence of one

 character expression or memo field within another character expression or memo field, counting from the rightmost character.

Syntax - RAT(<expC1>, <expC2>[, <expN>])

Returns - Numeric

Remarks - RAT(), the reverse AT() function, searches a character expression, starting with the last character in the expression, for the occurrence of another character expression. It then returns an integer corresponding to the position where the first character in the character expression is found. 0 is returned if the character expression isn't found.

The search performed by RAT() is case sensitive; upper-case and lower-case are respected.

Parameters - RAT() looks for <expC1> in <expC2>. <expC1> and <expC2> can be memo fields.

Include <expN> to specify which occurrence of <expC1> in <expC2> to look for. By default, RAT() searches for the first occurrence of <expC1> (<expN> = 1). If <expN> is included, RAT() searches for the <expN>th occurrence of <expC1> in <expC2>. 0 is returned if <expN> is higher than the number of times <expC1> occurs in <expC2>.

RIGHT() - Returns the specified number of rightmost characters from a character

 string.

Syntax - RIGHT(<expC>, <expN>)

Returns - Character

Remarks - Characters are returned beginning with the last character on the right and continuing for a specified number of characters.

Parameters - Rightmost characters are returned from the character expression specified in <expC>.

The number of characters returned from the character expression is specified by <expN>. All of the character expression is returned if <expN> is greater than the length of <expC>. The null string is returned if <expN> is negative or 0.

Example Return

RIGHT(‘Redmond, WA’,2) WA

RTRIM() - Returns the specified character expression with all trailing blanks

removed.

Syntax - RTRIM(<expC>)

Returns - Character

Remarks - RTRIM() returns a character string that results from removing the trailing blanks from a character expression. RTRIM() is identical to TRIM().

STR() - Returns the character string equivalent to a specified numeric expression.

Syntax - STR(<expN1>[, <expN2>[, <expN3>]])

Returns - Character

Parameters - The numeric expression evaluated by STR() is specified by <expN1>.The length of the character string returned by STR() is specified with <expN2>. The length includes one character for the decimal point and on character for each digit to the right of the decimal point.

STR() pads the character string with leading spaces if you specify a length larger than the number of digits left of the decimal point. STR() returns a string of asterisks, indicating numeric overflow, if you specify a length less than the number of digits left of the decimal point.

The number of decimal places in the character string returned by STR() is specified by the numeric expression <expN3>. You must include <expN2> to specify the number of decimal places.

If you specify fewer decimal places than are in the numeric expression <expN1>, the extra decimal digits are truncated. If the integer portion of <expN1> contains more than <expN2> digits, the string is displayed as *****.

Example Return

STR(123.456,10,4) 123.4560

STR(123.456,5,4) 123.4

SUBSTR() - Returns a specified number of characters from the given character

 expression or memo field.

Syntax - SUBSTR(<expC>, <expN1>[, <expN2>])

Returns - Character

Remarks - This function extracts and returns characters from a character expression, starting at a specified position in the character expression and continuing for a specified number of characters.

Parameters - The character expression from which characters are extracted is specified by <expC>. The expression <expC> can be a memo field.

The position in the character expression <expC> where character extraction begins is specified by <expN1>. The first character of <expC> is position 1.

<expN2> specifies the number of characters to extract from <expC>. If <expN2> is omitted, characters are extracted until the end of the character expression is reached.

Example Return

A = ‘abcdefghijklm’

SUBSTR(A,1,5) abcde

SUBSTR(A,6) fghijklm

SUBSTR(A,4,2) de

TIME() - Returns the current system time in 24-hour, eight-character string

(HH:MM:SS) format.

Returns – Character

TRIM() - Returns the specified character expression with all trailing blanks removed.

Syntax - TRIM(<expC>)

Returns - Character

Remarks - TRIM() is identical to RTRIM().

UPPER() - Returns the specified character expression in upper-case.

Syntax - UPPER(<expC>)

Returns - Character

Remarks - Each lower-case letter (az) in the character expression is converted to upper-case (AZ) in the returned string. All other characters remain unchanged.

YEAR() - Returns the year from the specified date expression.

Syntax - YEAR(<expD>)

Returns - Numeric

Remarks - YEAR() always returns the year with the century. The CENTURY setting (ON or OFF) doesn't affect the returned value.

Parameter - Specify a date expression with <expD>. The date expression may be a function that returns a date, or a date type memory variable, array element or field. It can also be a literal date string (for example, {06/06/92}).

Event Session Description

GETDESC(46,{A}) where {A} = “key” NOT “session key”.

% Difference

%({B}, {A}), where B = this year giving, A = last year giving

Title:

Question:

Product:

Product Family:

Product:

Module:

Version/SP:

Sage Integration:

Issue #:

Environment:
O/S:

Engine:

Browser:

Third Party:

Business Reason:

Status:
Related Information:
