
Customizing GDPR in netFORUM
Enterprise
This document explains opportunities to personalize the GDPR features of netFORUM

Enterprise to your organization’s specific needs. Each organization may approach

GDPR compliance differently, so these general instructions are a starting point for your

own organization’s standard operation procedures.

The screen shots in this document show netFORUM version 2017. The features

function similarly in earlier versions of netFORUM, but the user interface differs slightly.

Contents

Customizing GDPR Features .. 2

Validations ... 2

Configuring Validations .. 3

Adding a New Validation .. 4

Removing a Validation ... 5

Updating a Validation ... 6

Customizing the Anonymization Data .. 6

Adding an Anonymization Table .. 7

Disabling an Anonymization Table... 9

Deleting an Anonymization Table .. 9

GDPR Data Child Forms ... 10

+1.727.827.0046 9620 Executive Center Dr. N Suite 2002

communitybrands.com Saint Petersburg, FL 33702 2

Customizing GDPR Features

If your organization desires to add or change validations, which personally identifiable

information (PII) data is included in the anonymization operation, or if you’d like to add

additional pieces of netFORUM to the Data Export, this document explains how you can

do this.

In order to customize the anonymization operation, you will need to run Microsoft SQL

Server Management Studio and you must have Transact SQL skills in order to write

basic UPDATE and SELECT commands. You must also know the netFORUM data

model. You will not be able to change this from the netFORUM user interface. In order

to include more data elements in the Data Export, you will need to operate the

netFORUM Toolkit.

Validations

When a user runs the anonymization operation, netFORUM first performs a series of

20+ distinct validations to check to see if the individuals has any active business with

the organization. If the individual does, then the anonymization operation will stop

without updating any data, and show the user a message for each validation that failed.

Here is an example of what a user will see after they attempt to anonymize an individual

who has active business:

+1.727.827.0046 9620 Executive Center Dr. N Suite 2003

communitybrands.com Saint Petersburg, FL 33702 3

Validation failures during the anonymization operation

All the validations will be tested, and any that fail will be listed, as shown above.

If all the validations succeed, then netFORUM will proceed to execute the

anonymization operation.

Configuring Validations

Validation business rules are managed in a database table called

co_individual_gdpr_validation. The initial release of GDPR contains more than 20

different validations. Each row in this table executes a SQL select command that returns

a recordset with 0 or more rows, which looks for the existence of data, linked to the

individual, in a table that would be considered “active business”. If one or more rows are

returned, then the validation fails. If 0 rows are returned, then the validation passes.

For example, the following command looks for the existence of an invoice, associated to

the individual, in a non-closed accounting batch:

SELECT 1 FROM ac_invoice WHERE inv_delete_flag = 0 AND (inv_cst_key = @key OR
inv_cst_billing_key = @key OR inv_ind_cst_billing_key = @key) AND inv_bat_close_flag = 0

The @key parameter in the statement will be substituted at runtime with Customer Key

of the individual you are attempting to anonymize.

+1.727.827.0046 9620 Executive Center Dr. N Suite 2004

communitybrands.com Saint Petersburg, FL 33702 4

If this statement returns one or more rows, then the validation fails. The anonymization

operation cannot continue until the active business is resolved. The resolution could be

different for each type of data.

For example, one type of active business is having an active committee assignment:

SELECT 1 FROM mb_committee_x_customer WHERE cmc_cst_key = @key AND (cmc_end_date IS NULL
OR cmc_end_date > GETDATE())

To resolve this validation, a user must enddate all the individual’s committee

assignments.

Adding a New Validation

If you wish to include additional validations, you can add one in the following way.

First, in SQL Server Management Studio, write a SQL select command that looks for

the existence of data belonging to an individual, in a particular table. Here is a starting

point:

declare @key uniqueidentifier = 'AC87F1D1-AF3B-4BF1-A2B9-2F1B675642B4'

select 1 from co_customer_alias where cal_cst_key=@key

For the @key variable on the first line, set to the value to be that of a specific Customer

Key where that customer does exist in the table. Make sure the SELECT command

returns a row. Once you have the SQL SELECT command working successfully, write a

INSERT command as shown below to insert a new row into the

co_individual_gdpr_validation table like this:

insert co_individual_gdpr_validation (isActive, query, msg)

values (1, 'select 1 from co_customer_alias where cal_cst_key=@key', 'Customer has a Name
Alias. You must remove all Name Aliases for the customer before continuing.')

For the value that goes into the “query” column, do not include the “declare” line in the

fragment above; this is just to help test the validity of your SQL command. Include only

the SELECT line. Be sure to include the @key variable in the SQL command. The value

+1.727.827.0046 9620 Executive Center Dr. N Suite 2005

communitybrands.com Saint Petersburg, FL 33702 5

for “msg” should be a human readable error message that describes the validation error

and how to resolve it.

If the logic for a validation is complex, you can write a stored procedure or UDF and

have the stored procedure or UDF execution be in the “query” column.

After running this INSERT command, you should see the new record if you select all the

rows from the table:

select * from co_individual_gdpr_validation

Results of query

Removing a Validation

If you wish to remove a validation, then update the isActive column for the particular row

to 0. We caution that doing so could result in problems if the data is anonymized. You

will need to update the specific row by the “number” property which is the primary key of

this table:

Sample SQL Command:

update co_individual_gdpr_validation set isActive=0 where number=15;

If you added a custom validation and you wish to delete it, you can run a delete

statement by referencing the number value:

delete co_individual_gdpr_validation where number=999;

+1.727.827.0046 9620 Executive Center Dr. N Suite 2006

communitybrands.com Saint Petersburg, FL 33702 6

Updating a Validation

If you wish to update a particular baseline validation to change the logic in some way,

then we recommend that you make the baseline validation inactive, and then add a new

one containing the specific logic that you desire.

Alternately, leave the baseline validation intact and add a new additional one (unless

the baseline validation conflicts with your new validation).

Customizing the Anonymization Data

If you wish to alter which personally identifiable information (PII) data netFORUM

anonymizes, you may manage those operations by updating or editing the data in the

database table co_individual_gdpr_action. In order to do this, you will need to know the

netFORUM data model and some basic Transact SQL skills to write UPDATE SQL

commands. You must ensure that your SQL command is correct and updates ONLY the

specific individual and not all individuals.

The rows in the co_individual_gdpr_action table determine which netFORUM database

tables will be anonymized or updated in various way. The default set of operations

contains more than 70 different operations against various netFORUM tables, each of

which anonymizes specific PII data in netFORUM.

The anonymization operation executes each command, one after another. If any

command fails, then the operation will skip to the next one and keep going.

For example, the row that updates phone numbers contains this statement in the

“query” column:

UPDATE co_phone SET
 phn_number = @gdpr,
 phn_number_display = @gdpr
WHERE phn_cst_key_owner = @key

The “msg” column contains the name of the table (co_phone).

+1.727.827.0046 9620 Executive Center Dr. N Suite 2007

communitybrands.com Saint Petersburg, FL 33702 7

As you can see in this command, the purpose is to anonymize the phone number and

phone number display columns.

Note the two special parameter values that netFORUM will parse at runtime when the

anonymization operation executes. Any commands you run must include these special

parameters.

• @gdpr – this will contain a system-generated string that will replace PII data with

an anonymized string, for example “GDPR-907987” for an individual whose

record number is 907987.

• @key – this will contain the value of the customer key of the customer being

anonymized.

You might also wish to NULL certain data fields. Here is an example of the “query”

command for the ac_customer_payment_info table, which stores saved payment

methods such as electronic payment gateway tokens. This command anonymizes some

columns and sets other columns to NULL:

UPDATE ac_customer_payment_info SET
 cpi_cc_cardholder_name = @gdpr,
 cpi_cc_number = NULL,
 cpi_cc_number_display = NULL,
 cpi_city = @gdpr,
 cpi_eft_account_number = NULL,
 cpi_eft_account_number_display = NULL,
 cpi_eft_routing_number = NULL,
 cpi_name_on_check = @gdpr,
 cpi_state = @gdpr,
 cpi_street = @gdpr,
 cpi_vault_account = NULL,
 cpi_zip = NULL
WHERE cpi_cst_key = @key

Adding an Anonymization Table

You may also update a particular command, or add a new one.

If you wish to update a baseline operation, then we recommend setting the baseline

operation isActive column to 0, and adding a new command in a new row to the

co_individual_gdpr_action table.

+1.727.827.0046 9620 Executive Center Dr. N Suite 2008

communitybrands.com Saint Petersburg, FL 33702 8

Suppose you have a custom database table containing PII that you would like to

anonymize. Suppose the table is called client_xyz_nicknames, with the column

n09_nickname containing PII and the column n09_cst_key being the foreign key column

containing the customer key. In that case, you would insert the following row into the

co_individual_gdpr_action table:

Insert co_individual_gdpr_action (isActive, query, msg)

Values (1, 'update client_xyz_nicknames set n09_nickname=@gdpr where n09_cst_key=@key',
'client_xyz_nicknames')

After running this command, a new row will exist as shown. The “number” column is an

integer identity column that gets set automatically:

select * from co_individual_gdpr_action

Another common scenario is if you have PII data in an extender table. For example,

suppose you have an individual extender column

co_individual.ind_jobboard_username_ext that you wish to anonymize. In this case, add

the following row:

Insert co_individual_gdpr_action (isActive, query, msg)

Values (1, 'update co_individual_ext set ind_jobboard_username_ext=@gdpr where
ind_cst_key_ext=@key', 'co_individual_ext')

If you add a new table, you should also add another entry to anonymize any change log

rows related to the record being anonymized. For example, following the phone update

+1.727.827.0046 9620 Executive Center Dr. N Suite 2009

communitybrands.com Saint Petersburg, FL 33702 9

(shown above) a second command runs that anonymizes values in related change log

rows:

UPDATE fw_change_log SET
 log_value = @gdpr,
 log_value_new = @gdpr
WHERE
 log_mdc_table_name = 'co_phone'
 AND EXISTS (SELECT 1 FROM co_phone WHERE phn_key = log_record_key AND
phn_cst_key_owner = @key)

Disabling an Anonymization Table

If you wish to turn off a particular operation, update the isActive column from 1 to 0 as

shown. You will need to determine the “number” value which is the primary key column

of this table:

update co_individual_gdpr_action set isActive=0 where number=71

Deleting an Anonymization Table

If you need to delete a row, then execute this command for the particular row you wish

to delete:

delete from co_individual_gdpr_action where number=71

As described earlier, as an alternate to deleting a row, you can set it to be inactive so it

will not execute during the anonymization operation:

update co_individual_gdpr_action set isActive=0 where number=71

We do not recommend deleting baseline rows in this table.

+1.727.827.0046 9620 Executive Center Dr. N Suite 20010

communitybrands.com Saint Petersburg, FL 33702 10

GDPR Data Child Forms

If you wish to add more Child Forms for more data tables that can be exported, you can

do so in the Toolkit by adding additional Child Forms and Profile Details, following the

same pattern as the baseline child forms.

